

SC7 1193H-1TH22-ECT 温控器使用说明手册

目录

1.产品规格	1
2.温控器使用说明	
2.1 温控器可扩展的模块选型	
2.2 主站软件组态	
2.3 温控器扩展模块和组态	
2.4 技术规格	
3.EtherCAT 通讯	
过程数据地址说明:	
COE 地址说明:	
4.Modbus-RTU 通讯	
5.PID 自整定功能	
6、热电偶拨码设置	
7、温控器电气接线图	
附录:	

1.产品规格

SC7 1193H-1TH22-ECT 是一款基于 EtherCAT 总线的智能 PID 温控器。最大支持 40 路温控。本体带 16 路数字量输出和 16 路热电偶输入,支持 16 路 PID 控制。可通过温控器的背板总线扩展不同类型模块采集温度。

2. 温控器使用说明

2.1 温控器可扩展的模块选型

温控器名称	扩展温度模块型号	说明
	SC7 1131H-7RF22	8路热电阻输入
	SC7 1131H-7RH22	16 路热电阻输入
SC7		
1193H-1TH22-ECT		
113011 111122 LC1		

2.2 主站软件组态

软件组态可不按实际组态顺序,但不可超过实际组态数量,软件可组态类型如下表:

最大组态	类型	可选组态类型	说明
		PID. 1Ch	1 通道 PID
	PID	PID. 2Ch	2 通道 PID
	1 10	PID. 4Ch	4 通道 PID
		PID. 8Ch	8 通道 PID
14 个槽位	RTD/TC (温度模块)	RTD. 1Ch/TC. 1Ch	1 通道 RTD/TC
(Slot)		RTD. 2Ch/TC. 2Ch	2 通道 RTD/TC
		RTD. 4Ch/TC. 4Ch	4 通道 RTD/TC
		RTD. 8Ch/TC. 8Ch	8 通道 RTD/TC
			16 路冷却输出,此模块只能用于
	16DO_PID_COOL	16DO_PID_COOL	温控器本身 PID 的冷却输出,最大
			支持扩展一个此模块

2.3 温控器扩展模块和组态

- * 温控器后实际扩展模块数量最大为7个;
- * 以下组态情况会导致主站报错,无法进入正常工作状态:
 - 1. 实际扩展的 PID 超过 24 路;
 - 2. 实际扩展的 16D0 PID COOL 冷却模块数量大于 1;
 - 3. 软件组态大于实际组态,例如实际组态了 32 路 PID, 软件组态了 33 路 或者更多。

2.4 技术规格

温控器模块站 ID 由模块上的 6 位拨码开关 SW1~SW6 来设定,如下所示:

拨码开关1-8	设置	地址选择(1—63)
SW 1, 2, 3, 4, 5,6	000001	2#000001=1 地址为: 1

000010 2#000010=2 地址为: 2 000011 2#000011=3 地址为: 3 000100 2#000100=4 地址为: 4 111101 2#111101=61地址为: 61 111111 2#11111=63地址为: 63

注: 拨码开关上拨为 1, 如果拨码全部为 0, ID 号由上位机主站分配。

电气规格

常规	SC7 1193H-1TH22-ECT
可插拔式 I/O 端子	是
输入热电偶通道数	16点
输入范围	热电偶类型: J、K、T、E、R、S、N 、+/-80mv
电压输入端的允许输入电压,最大	30 V DC
电隔离	
• 现场侧-逻辑	1500 V AC
● 现场侧-直流 24 V	1500 V AC
◆ 直流 24 V-逻辑	1500 V AC
更新时间	825 ms (所有通道)
测量原理	SIGMA-DELTA
分辨率	15 bit + 符号
● 温度	0.1 ℃ / 0.1 ℉
• 电压	15 bit + 符号
噪声频率上的噪声抑制	85 dB
• 对噪声频率	50 / 60 / 400 Hz
共模电压	120 V AC
共模抑制,最小	120 mA 在 120 V AC
基本误差	0.1% FS (电压)

再现性	0.05% FS
错误指示	LED : SF
电缆长度,最大	100 m 到现场
尺寸 (WxHxD), mm	86 x 96 x 120

数字量输出规范	
额定电压 L+	5.0 – 28.8 V DC
(针对输出负载公共端)	
输入反极性保护	是
输出通道数	16
输出方式	NPN型
绝缘	光耦合器
16路输出电流(Q0.0~Q1.7)	
• 总和	4.0 A
• 同时输出时每路输出电流	0.25 A
单路最大输出电流"1" 信号	
• 单独1路输出,其余不输出时	0.5 A
阻抗载荷	0.5 A
触点使用寿命	NA
• 机械上	
• 额定负载电压	
线长	
• 不屏蔽	50 m
• 屏蔽	100 m

PID 部分	
PID算法	参数自整定,PID+FUZZY
采样时间	1秒
输出最小脉宽	10 ms
PID类型	P、PI、PD、PID型

.....

PID输出类型	PWM脉宽控制
---------	---------

指示灯	
PWR大丁	绿色,显示输入电源是否正常
SF灯	红色, 灯亮表示输入通道有断线
BF灯	红色, 灯不亮表示耦合器与扩展模块通信正常,亮 表示与扩展模块通信故障
NETAT	绿色,亮时表示耦合器与主机通信正常,不亮表示 通信不正常或没有连接

3.EtherCAT 通讯

模块支持 EtherCAT 协议,ID 号由拨码开关设置,如果拨码全部为 0,本站的总线 ID 号由上位机自主分配。在上位机调入"xml"文件,温控器对应的地址如下。

过程数据地址说明:

模块	大小 (byte)	名称	描述		说明	属性
			控制字	Bit6-7	保留 HotRedun 0: 加热输出冗余功能不起作用 1: 启用加热输出冗余功能,这时冷却端 无占用情况下 (PID 双极性不启用),冷	W
		Ctrl_Word (1byte)		Bit4	却端会有同样的输出; 保留 SavePara 参数保存,将 Pwm_T、P_Buf、	
	5 Outputs			Bit3	I_Buf、D_Buf 保存到 flash,上升沿有效 保留	
	(每通道)			Bit1 Bit0	AutoTuning 自整定使能 PID Run PID 运行	
PID 模块(1、2、		SV (2byte)	设定温度		整数,1 位小数位,如写入值 1500, 置的是 150. 0 摄氏度。	W
4、8 通道可选)		PV_Offset (2byte)	实际温度偏移	有符号	工修正测量温度与实际温度的偏差; 整数,1位小数位,如写入值20,实 的是2.0摄氏度,范围:(-50)-(+50), 50按±50处理	
	3 Inputs (每诵首) Sta	PV (2byte)	当前通道实测		整数, 1 位小数位, 如读入值 1495, 实际测量的是 149.5 摄氏度。	R
		Status (1byte)	当前通道 PID 运行 状态字	Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0	保留 自整定完成 CoolingON 正在制冷 HeatingON 正在加热 AutoTunong err 自整定错误 AutoTunong ON 正在自整定 PID ON PID 开启状态 SavePara OK 保存参数成功	R
RTD/TC 模块 (1、2、4、8 通道可选)	2 Inputs (每通道)	Channe1x	对应每个通道的 RTD/TC 输入值		整数,1 位小数位,如写入值 1500, 置的是 150. 0 摄氏度。	R
16DO_PID_COOL	2 Inputs	Ch. 1-Ch. 16	指示 1-16 通道每个 通道冷却输出状态		通道有输出 通道不输出	R

COE 地址说明:

主索引 Index	子索引 SubIndex	类型	名称	说明	属性
0x2000	1-40 (对应 1-40 通道)	Uint16	Ch.x Kp	通道 x 的比例 P	RW
0x2001	1-40 (对应 1-40 通道)	Uint16	Ch.x Ti	通道 x 的积分 Ti	RW
0x2002	1-40 (对应 1-40 通道)	Uint16	Ch. x Td	通道 x 的微分 Td	RW
0x2003	1-40 (对应 1-40 通道)	Uint16	Ch.x Pwm_T	通道 x 的周期 Pwm_T	RW
	1	Uint8	ExtNum	扩展模块数量	RO
	2	Uint8	LacalErr	本地模块错误	RO
	3	Uint8	EM1Err	扩展模块 1 错误	RO
	4	Uint8	EM2Err	扩展模块 2 错误	RO
0x2004	5	Uint8	EM3Err	扩展模块3错误	RO
	6	Uint8	EM4Err	扩展模块 4 错误	RO
	7	Uint8	EM5Err	扩展模块 5 错误	RO
	8	Uint8	EM6Err	扩展模块 6 错误	RO
	9	Uint8	EM7Err	扩展模块7错误	RO
0x2005	1-40 (对应 1-40 通道)	Uint16	Ch.x Pout	通道 x 的周期 Pout	RO
0x2006	1	Uint8	ModuleErrRstEN 模块错误数据清除使能	置 0 时,扩展模块出现总线错误时,模块输入数据会清除为 32767; 置 1 时,保持原来的数据;	RW
	2	Uint8	EtherCATBusErrRstEN 总线错误数据清除使能	置 0 时,当 EtherCAT 总线出现错误,输 出数据会清除为 0; 置 1 时,保持原来的数据;	RW
	3	Uint16	CoolCoeff 冷却输出阀值	冷却的模拟输出值必须大于"阀值 /10*32000",冷却才会有输出;范围: 0-10,大于10按10处理	RW
0x6000	1	Uint16	ID	产品的 ID 号	RO

4.Modbus-RTU 通讯

模块支持 Modbus-RTU 协议,硬件提供 RS485 接口,波特率固定为 19200bps,偶校验,8 位数据位,1 位停止位,从站地址固定为2;所支持的 Modbus 功能码为3、6、16 (保持寄存器)。

Modbus 地址说明:

地址	说明			属性
		Bit6-7 保留		
	PID 1-40 通道的控制字	Bit5	HotRedun 0: 加热输出冗余功能不起作用 1: 启用加热输出冗余功能,这时冷却端无占用情况下(PID 双极性不启用),冷却端会有同样的输出;	- RW
40001-40040		Bit4	BIP 0:单极性 1:双极性	
		Bit3	SavePara 参数保存,将 Pwm_T、 P_Buf 、 I_Buf 、 D_Buf 保存到 flash,上升沿有效	-
		Bit2	保留	
		Bit1	AutoTuning 自整定使能	
		Bit0	PID_Run PID运行	
40041-40080	PID 1-40 通道的设定温度 SV			RW
40081-40120	PID 1-40 通道的实际温度偏移 PV_Offset			RW
40121-40160	PID 1-40 通道的比例 P			RW
40161-40200	PID 1-40 通道的积分 I			RW
40201-40240	PID 1-40 通道的微分 D			RW
40241-40280	PID 1-40 通道的周期 PWM_T			RW
40281-40320	PID 1-40 通道的保存参数标志位,为 1 时保存当前通道参数,保存成功后自动复位为 0			RW
40321	模块错误数据清除使能 置 0 时,扩展模块出现总线错误时,模块输入数据会清除为 32767; 置 1 时,保持原来的数据;			RW
40322	总线错误数据清除使能 置 0 时,当 EtherCAT 总线出现错误,输出数据会清除为 0; 置 1 时,保持原来的数据;			RW
40323	冷却输出阀值 冷却的模拟输出值必须大于"阀值/10*32000",冷却才会有输出; 范围: 0-10,大于10按10处理			RW
40324	保存所有通道参数,置1时保存所有通道参数,保存成功后自动复位为0			RW
40325-40400	保留			R

PID 1-40 通道的模拟输出值 Pout 40401-40440 R PID 1-40 通道的实际输入温度 PV 40441-40480 R Bit7 保留 R 自整定完成 Bit6 Bit5 CoolingON 正在制冷 HeatingON 正在加热 Bit4 PID 1-40 通道的状态字 40481-40520 Bit3 AutoTunong err 自整定错误 Bit2 AutoTunong ON 正在自整定 Bit1 PID ON PID 开启状态 SavePara OK 保存参数成功 Bit0 40521-40648 温度模块输入区 R 40649-40650 保留 R 扩展模块数量 40651 R 本地模块错误 40652 R 40653 扩展模块1错误 R 扩展模块2错误 40654 R 40655 扩展模块3错误 R 扩展模块 4 错误 40656 40657 扩展模块5错误 R 扩展模块6错误 40658 R 扩展模块7错误 40659 R

注意事项:

在连接 MODBUS RTU 主站进行调试的时候,如果模块同时连接了 EtherCAT 主站, EtherCAT 总线在 PDO 刷新的参数:比如设定温度 (SV)、控制字 (Ctrl_Word)等这些在 EtherCAT 总线的 PDO Output 的参数, MODBUS RTU 主站这边就不能同时写了,但是可以同时读;而 EtherCAT 总线的 COE 里面的参数,例如 PID 参数是可以通过 EtherCAT 总线和 Modbus 总线同时写和读的。

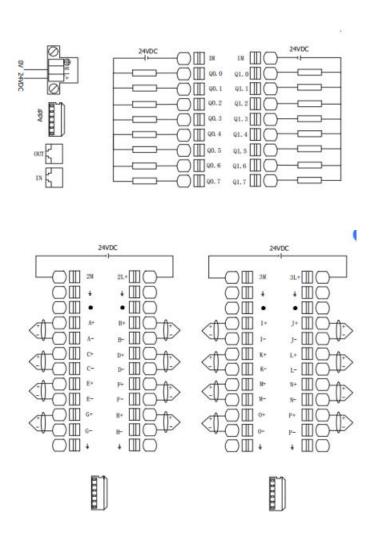
5.PID 自整定功能

①:若 "Ctrl_Word"控制字 Bit1 (AutoTuning)置 1 (自整定功能开启),这时自整定功能有效,系统直接进入自整定状态模式;该位上升沿有效,自整定完成后若要重新自整定,必须要将该位置 0 后再重新置 1。

优先级关系: PID 运行开启>自整定。

②:自整定开启时,为了得到更优的 PID 参数,请将设定温度"sv"设置为设备正常工作的温度,同时在开启自整定功能时,当前测量温度"pv"值为常温值或是一个相对比较稳定的状态。(如果自整定功能开启时,当前通道测量温度处于一个变化比较大的状态,那么在计算当前温控系统数学模型时会出现偏差,从而得到的自整定参数不会是最优参数)。

6、热电偶拨码设置

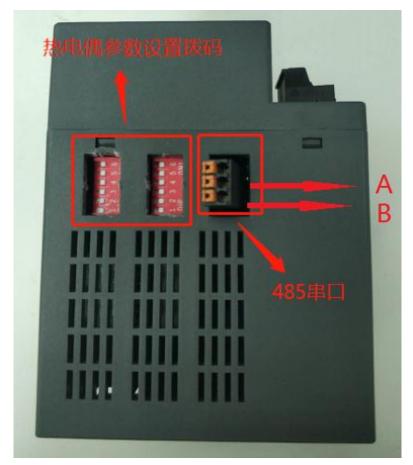

热电偶类型	SW1	SW2	SW3
J(缺省)	0	0	0
K	0	0	1
T	0	1	0
Е	0	1	1
R	1	0	0
S	1	0	1
N	1	1	0
+/- 80mV	1	1	1

选择项目	开关位置	设置	
断线检测方向	SW4	0:正标定(+3276.7度)	
		1:负标定(-3276.8度)	
是否进行断线检测	固定为进行断线检测		
测量单位选择	SW5	0:摄氏度,1:华氏度	
是否进行冷端补偿	SW6	0:是,1:否	

7、温控器电气接线图

SC7 1193H-1TH22-ECT 接线图

附录:



SC7 1193H-1TH22-ECT 正面图

SC7 1193H-1TH22-ECT 上侧图

SC7 1193H-1TH22-ECT 右侧图